6.3 Electromagnetism

Mark scheme - Electromagnetism

Question	Answer/Indicative content	Mark	Guidance
1	A	1	
	Total	1	
2	C	1	
	Total	1	
3	D	1	
	Total	1	
4	D	1	
	Total	1	
5	D	1	
	Total	1	
6	C	1	
	Total	1	
7	B	1	
	Total	1	
8	B	1	
	Total	1	
9	D	1	
	Total	1	
10	C	1	
	Total	1	
1	C	1	Examiner's Comments This was a well-answered question with most candidates correctly recalling that charge is conserved according to Kirchhoff's first law. A significant number of candidates distracted towards B; perhaps because of the unit of charge is the coulomb.
	Total	1	
1 2	D	1	Examiner's Comments The correct response is \mathbf{D}. This question was correctly answered by the

6.3 Electromagnetism

6.3 Electromagnetism

1	i	F upwards between poles	B1	
	ii	$\begin{aligned} & \mathrm{F}=\mathrm{BII}=0.032 \times 2.5 \times 0.06 \\ & =4.8 \times 10^{-3}(\mathrm{~N}) \end{aligned}$	B1	
		Total	2	
2		$\begin{aligned} & \lambda_{1}=d \sin 12.5=4.33 \times 10^{-7} \\ & m \\ & \text { giving } 1 / d=5 \times 10^{5} \text { or } d=2 \\ & \times 10^{-6} \\ & \lambda_{3}=\sin 19.0 / 5 \times 10^{5}=6.51 \\ & \times 10^{-7}(\mathrm{~m}) \end{aligned}$ or $\lambda_{1}=d \sin 12.5=4.33 \times 10^{-7}$ and $\lambda_{3}=d \sin 19.0$ so $\lambda_{3}=4.33 \times 10^{-7} \mathrm{sin}$ $19.0 / \sin 12.5=6.51 \times 10^{-7}$ (m)	C1	or $\lambda_{2}=\mathrm{d} \sin 14.0=4.84 \times 10^{-7}(\mathrm{~m})$
			A1	or use $\lambda_{2}=d \sin 14.0=4.84 \times 10^{-7} \mathrm{~m} \sin 19.0 / \sin 12.5=0.326 / 0.216=1.50$
		Total	2	
2 1		Sinusoidal curve with the same peak e.m.f. Sinusoidal curve with half period	B1	Note curve must show at least half a period Allow ± 1 small square for e.m.f. Ignore phase Note graph must show at least half a period Allow ± 1 small square for t Examiner's Comments Most candidates scored a mark for showing that the period of the new e.m.f. trace was halved. Only a small proportional had the peak e.m.f. unchanged; the most frequent incorrect trace showed the peak e.m.f. also being halved. The sinusoidal curves were generally well-sketched.
		Total	2	
		Direction of field shown as clockwise Three field lines shown as concentric circles and distance between adjacent field lines increasing as distance from wire increases	B1 B1	Expect at least one field line with an arrow Allow more than three lines, but distance between adjacent field lines increasing distance from wire must increase for all Examiner's Comments This question requires the candidates to identify the direction of the field and also to appreciate that the magnitude of the field reduces as the distance from the wire increases. Only around half were able to apply the right hand rule correctly to determine the direction, and only around 10% scored both marks. The increasing separation of the field lines with distance was poorly done for

		or description in terms of Lenz's law as seen by coil to conserve energy - The e.m.f.becomes zero because: the (rate of) change of magnetic flux is zero when the magnet is in the middle of the coil - The second peak has a larger negative amplitude because: the rate of change of flux linkage is greater (when the magnet leaves the coil compared to when it enters) - The pulses have different widths because: the second Δt is shorter (since magnet accelerates) or areas under curves must be the same (because total change of flux linkage is the same on entering and leaving coil) / area under curve $=V \Delta t$ $=N \Delta \varphi$ (so bigger V leads to smaller Δt)		- why is an e.m.f generated? - why does the e.m.f change sign? - why does the e.m.f fall to zero halfway through the fall? - why is the maximum negative e.m.f greater than the maximum positive e.m.f/ why is the width of the second peak smaller than that of the first peak? The strongest responses were those where candidates stated at the outset what gave rise to the e.m.f. Some candidates clearly recognised the need to state Faraday's law, but simply quoted the formula without defining any terms and so could not receive credit. Weaker responses were characterised by describing the shape of the graph in terms of the position of the magnet - often incorrectly - rather than in terms of flux linkage. A common misconception was stating that the negative peak was caused by the magnet returning after an inversion, with the zero e.m.f. just after 0.1 s being caused by the magnet being temporarily stationary. However, the question clearly states that 'Fig.3.3 shows ... the e.m.f. generated ... as the magnet falls the distance h'. Exemplar 3 below demonstrates clearly this common misconception. Exemplar 3
		Total	3	
9		$\begin{aligned} & F=B e v \text { and } F=e E \\ & E=V / a \text { or } F=(e E)=e V / \\ & a \\ & \text { Bev }=e V / \text { a giving } V=\text { Bva } \end{aligned}$	B1 B1 B1	allow Q or q for e Examiner's Comments This was an exercise in writing basic definitions in algebraic form and then using them to derive a given equation. More than half of the candidates managed to gain full marks with less than one third scoring zero. The presentation was sometimes difficult to follow with the inclusion of unnecessary equations and deletions and the substitution of d for a in the last line.
		Total	3	

6.3 Electromagnetism

6.3 Electromagnetism

		$\begin{aligned} & \Delta \mathrm{E}=\mathrm{hc} / \lambda \\ & \lambda=6.63 \times 10^{-34} \times 3 \times 10^{8} / \\ & 4.8 \times 10^{-20}=4.1(4) \times 10^{-6} \\ & (\mathrm{~m}) \\ & \text { region: infra red } \end{aligned}$	C1 A1 B1	
				allow ecf if wavelength calculation incorrect.
		Total	4	
3	i	The force is right angles to the motion / velocity. The particle describes a circle in the plane of the paper.	B1 B1	
	ii	Particle experiences a force perpendicular to motion / velocity. It moves to the right and either comes out or goes into the plane of the paper (in a parabolic path).	B1 B1	
		Total	4	
3 5	i	(induced) e.m.f. is (directly) proportional / equal to the rate of change of (magnetic) flux linkage	B1	Not current Allow 'rate of cutting' for 'rate of change'
	ii	Connect the primary (coil) to an alternating voltage / current Oscilloscope connected across secondary coil / to measure E A graph of E against N will be a straight line through the origin.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow AC (can be on the figure) Not changing / variable for alternating Allow voltmeter (can be on the figure) Allow p.d. / voltage for e.m.f. / E throughout Ignore any component (e.g. lamp or resistor) connected across the secondary coil Allow $(E \div N)=$ constant
		Total	4	
3		The gradient is maximum / maximum rate of change of B / maximum rate of change of flux (linkage)	B1	Allow slope instead of gradient Examiner's Comments Although worth just 1 mark, this question did provide good opportunity for topend candidates to pick up one mark. Many candidates quoted Faraday's law of electromagnetic induction, without mentioning that the rate of change of flux (linkage) was maximum at $B=0$. Low-scoring candidates wrote about the

				calculated a percentage uncertainty of 5.3%. The final answer required the correct number of significant figures. Some candidates either did not see this, or ignored it, leaving their final answer in different significant figures. It was noted that several candidates underlined this instruction and in general they tended to follow it. It is good practice to do this.
		Total	4	
3	i	the flux in the coil changes/ increases/ decreases/ varies (caused by the spinning/rotating magnet) causing a sinusoidal/alternating e.m.f./AW	B1 B1	or e.m.f. is proportional to /equals rate of change of flux linkage/linking the coil or qualification, e.g. magnet vertical gives minimum flux through core or maximum rate of change of flux or vice versa with magnet horizontal or maximum flux is when emf is zero or minimum flux is when emf is maximum or vice versa
	ii		B1	allow \pm cos wave of correct period, constant amplitude at least one cycle N.B. quality: curve must look like a reasonable sine wave as one is present on the page to copy Examiner's Comments In part (i) many of the candidates described the phase shift that they drew in the sketch graph of part (ii) by stating either the magnitude or the rate of change of the flux linkage when the induced e.m.f. was zero or a maximum. The majority quoted Faraday's law either in words or as a mathematical equation. Some candidates introduced current and Lenz's law not appreciating that an oscilloscope is effectively a voltmeter. Few described the whole picture of a steadily rotating magnetic field sweeping through a coil creating a changing flux linkage.
	iii	$\begin{aligned} & \varphi=B A=V / 2 \pi f N=1.2 /(2 \times \pi \\ & \times 24 \times 150) \\ & \varphi=5.3 \times 10^{-5} \end{aligned}$ $\mathrm{Wb} / \mathrm{T}^{2}$	B1 B1	allow no other unit combinations; NOT T m ${ }^{-2}$
		Total	5	
3 9	i	Hall probe only compares B-fields / AW or V will be too small / less than 1 mV so not easy to measure	B1	allow any sensible comment, e.g. how do you convert the measured V into a B value
	ii	find B using $F=B / l$; F is measured by weighing magnets (e.g. placed on top pan balance assuming wire is fixed); graph of F against / to find $B(I)$ from gradient / AW;	B1 B1 B1 B1 B1 B1 B1	max 4 of the 5 marking points alt measure F by adding small masses to wire to return it to zero current position or use readings of F at several I to find average $F I I$, etc. or measurement of small masses in alt. method, etc quantitative suggestion about \% error i.e. l small (1 mm in 60) leading to large \% uncertainty or difficulty in determining edge / end of B-field

		greatest uncertainty: measurement of /in B-field sensible reason / justification for choosing / or small masses		Examiner's Comments Most candidates did not refer back to (b)(ii), noting that the potential difference across the Hall probe would be very small making the probe an unsuitable instrument for measuring the magnetic flux density, B. However almost all were familiar with the experiment where the magnets are mounted on a top pan balance with a fixed wire carrying the current. Only a small number varied the current and plotted a graph to obtain a more accurate value of B. Also few appreciated that the edges of the field spread out making the length of wire in the field the least reliable measurement.
		Total	5	
4			B1 B1	One correct line (or dot and cross) drawn Line must go through centre of coil Allow an incomplete line or a complete circle round the coil Ignore direction of arrow More than one line drawn All lines drawn must go through centre of coil and follow correct shape and direction of field Ignore spacing of lines Ignore any lines to the right of the coil
		(the magnetic) flux (of the coil) links the base / saucepan (the size/direction of) the flux linkage (constantly) changes/alternates (causing an alternating induced e.m.f.) (induced) current is large because metal/base/ saucepan has low resistance	$\begin{gathered} \mathrm{B} 1 \mathrm{x} \\ 2 \end{gathered}$	2 out of 3 possible marking points Allow (the magnetic) field lines cut the (base of the) saucepan Allow the (magnetic) field constantly changes/alternates Allow a bald statement of Faraday's Law
		iiiThe resistance of glass- ceramic/the (cook"s) hand is (very) large So (induced) current (or heating effect of current) is zero/negligible	M1 A1	Allow glass-ceramic/hand is an insulator/not a (good) conductor Do not allow the induced e.m.f. is (very) small
		Total	6	
4 1	a			Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Ignore incorrect references to the terms precision and accuracy

				of electromagnetic induction. Many realised that an alternating current produced an alternating magnetic flux within the iron core and this change in flux produced an e.m.f. at the secondary coil. One of the popular misconceptions was that there was an alternating current (or induced e.m.f.) within the iron-core. A small number of candidates referred to electromagnetic field in their descriptions rather than magnetic field.
	ii	$1\left(I_{s}=\right) 24 / 12 \text { or } 2.0(\mathrm{~A})$ $\left(I_{P}=\right) \frac{20}{400} \times 2.0$ (current in primary $=$) 0.10 (A) or $\begin{aligned} & \left(V_{P}=\right) 12 \times 20 \text { or } 240(\mathrm{~V}) \\ & \left(I_{P}=\right) \frac{24}{240} \end{aligned}$ (current in primary =) 0.10 (A) 2 Idea of changing / increasing (magnetic) field / flux / current (in primary) at the start Eventually current and flux (linkage) are constant, therefore no e.m.f.	C1 A1 C1 A1 B1 B1	Allow 1 sf answer Allow 1 sf answer Note: Any labels used must be clearly defined Examiner's Comment This question on current in the primary coil was successfully answered by most candidates. The most favourable method was to calculate the current in the secondary and then the current in the primary coil. The turn-ratio equation and $P=V I$ were effortlessly used to arrive at the correct answer of 0.10 A . Full marks were rarely scored but many top-end candidates did manage to score a mark for suggesting that the lamp was lit for a short period of time at the start because 'there was a changing magnetic flux as the current increased from zero to a steady value'. Too many answers focussed on the requirement of an alternating supply for an induced e.m.f. in the secondary coil and how a battery is not an alternating supply.
		Total	13	
		Level 3 (5-6 marks) Clear description, some measurements and full analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description, some	B1 \times 6	Indicative scientific points may include: Description a. Signal generator/a.c. supply connected to coil X b. Coil Y connected to voltmeter / oscilloscope (can be ondiagram) c. Use oscilloscope to determine period / frequency or readoff signal generator d. Adjust signal generator / use of rheostat to keep currentconstant in coil X Measurements

6.3 Electromagnetism

6.3 Electromagnetism

	ii	f is lower because μ is bigger and μ is on the bottom of the formula	B1	or greater inertia present with same restoring force / other physical argument
		Total	10	
		Level 3 (5-6 marks) A good plan with discussion of sensitivity and measurements that need taking. Detailed description of analysis needed linked to robust conclusions and consideration of a fair test. extra points from sections may balance omissions from others The ideas are well structured providing significant clarity in the communication of the science. Level 2 (3-4 marks) A good plan possibly with mention of sensitivity. Measurements that need taking should be described. Analysis linked to conclusions and possibly consideration of a fair test. extra points from sections may balance omissions from others There is partial structuring of the ideas with communication of the science generally clear. Level 1 (1-2 marks) A plan with discussion of measurements that need taking. Description of analysis needed linked to a conclusion. extra points from sections may balance omissions from others The ideas are poorly structured and impede the communication of the science.	B1	plan P - investigate one variable with the other fixed - oscilloscope time base can be off - do rough preliminary test over range of variable to check that there is a suitable variation in oscilloscope V - choose and fix f of I and value of other variable (M3); - measure e.m.f. V for 5 or 6 settings of variable from oscilloscope screen sensitivity S - magnitude of detected signal depends on rate of change of flux linkage / Faraday's law through search coil - so increases with f and B (N and A of search coil are fixed) - for large B use small $L f$ changing N or large N if changing L measurements \mathbf{M} - measure (maximum) e.m.f. V (using V / cm scale setting) on oscilloscope - measure peak to peak distance on graticule if time base not switched off - keep L fixed and adjust croc. clips to change N or keep N fixed and alter L (use ruler) analysis A - record table of V against N or L - plot graph of V against N or $1 / L$ conclusions \mathbf{C} - straight line graph - through origin is expected - to validate given relationship fair test F - ensure that Slinky coils are uniformly spaced and not touching together anywhere - croc. clips make good contact at only one point on coil - plane of coil must be vertical and coaxial with Slinky

6.3 Electromagnetism

		Level 0 (0 marks) Insufficient relevant science.		
	Total	6		

